(Carnegie Mellon University

Helnz

95-865 Unstructured Data Analytics

Lecture 12: Wrap up neural net basics;
image analysis with convolutional neural
nets (also called CNNs or convnets)

Nearly all slides by George H. Chen
with a few by Phillip Isola

Administrivia

e Reminder: HW2 due tonight 11:59pm

e Reminder: My office hours just for today have been shifted a little bit
earlier and will be from 6:30pm-7:30pm, still over the same Zoom link

(Flashback) Handwritten Digit Recognition

flatten weighted sums activation
> > >
(parameterized (can be
by a weight thought of as
matrix W and a pOSt-
28x28 image bias b) processing)
length 784 vector inear layer final

(784 input nodes) with 10 nodes output

(Flashback) Handwritten Digit Recognition

weighted sums
>

(parameteﬁzed (2D numpy array of
by a weight dimensions

matrix W and a 10—by—784)
bias b)
- (1D numpy array

W b <« with 10 entries)
length 784 vector inear layer
(784 input nodes) with 10 nodes

input linear
(1D numpy array with 784 entries) (1D numpy array with 10 entries)

(Flashback) Handwritten Digit Recognition

linear[@] = np.dot(input, W[O, :]) + Db[O]
linear[1] = np.dot(input, W[1l, :]) + b[1]

/83

linear[i] = 2{: input[j] X W[i,j] + b[1]
| =
(parametgrlzed (2D numpy array of

by a weight dimensions

matrix W and a 10—by—784)
bias b)
- (1D numpy array

W b <« with 10 entries)
/84 vector linear layer
pout nodes) with 10 nodes

weighted sums
>

nput linear
entries) (1D numpy array with 10 entries)

(Flashback) Handwritten Digit Recognition

weighted sums
>

(parameterized
by a weight
matrix W and a

bias b)

length 784 vector inear layer
(784 input nodes) with 10 nodes

(Flashback) Handwritten Digit Recognition

flatten weighted sums activation
> > >
(parameterized (can be
by a weight thought of as
matrix W and a pOSt-
28x28 image bias b) processing)
length 784 vector inear layer final

(784 input nodes) with 10 nodes output

(Flashback) Handwritten Digit Recognition

Many different activation functions possible 4 A
3.5 3.5
Example: Rectified linear unit (ReLU) A A
zeros out entries that are negative 1 0
RelLU
0.5 0.5
g 2
2
. (can be)
final = np.maximum(®, linear) thoughtofas
3 pOst- 3
-2 processing) | 0
S S
inear layer final
with 10 nodes output

linear final

(Flashback) Handwritten Digit Recognition

Many different activation functions possible 4 0.17
3.5 0.10
Example: softmax converts a table of numbers 4 0.17
into a probability distribution 1 0.00
softmax
0.01
>
2 0.02
. (can be
- 0.00
exp = np.exp(linear) 3 thought of as 0.06
final = exp / exp.sum() posp '
-2 processing) 0.00
S 0.46
inear layer final
with 10 nodes output

linear final

(Flashback) Handwritten Digit Recognition

Many different activation functions possible 4 A
3.5 3.5
Example: linear activation does nothing 4 4

-1 -1

This is equivalent to there being linear

no activation function 0.5 g 0.5
2 2

. (can be .

final = linear thought of as

3 DOSt- 3

-2 processing) | -2
9 S

inear layer final

with 10 nodes output

linear final

Handwritten Digit Recognition

flatten weighted sums softmax
> > >
(parameterized
by a weight
matrix Wand a
28x28 image bias b)
length 784 vector inear layer final

(784 input nodes) with 10 nodes output

Handwritten Digit Recognition

Training label: 6

— —) —_— Loss —» error

Input

Flatten Linear: Softmax 1
(10 nodes) log

estimated Pr(digit 6)

Handwritten Digit Recognition

Training label: 6

Input)
Flatten Linear Softmax

E.xz.:lmple:. (10 nodes)
2 training points

Loss = crror

log

1

estimated Pr(digit 6)

Training label: 5

Input

Flatten Linear Softmax
(10 nodes)

Loss =P crror

log

1

estimated Pr(digit 5)

average
loss/error

Handwritten Digit Recognition

Training label: 6

\4

—— — —_— Loss —» error

Categorical
cross entropy

Input

Flatteni Linear Softmax
(10 nodes)

Handwritten Digit Recognition

Training label: 6

v
— —> — —> —> | Loss | = error
Categorical

cross entropy

Input

Flatten Linear RelLU Linear Softmax
(512 nodes) (10 nodes)

Handwritten Digit Recognition

Training label: 6

v
— > —_ > | Loss | = error
Categorical

cross entropy

Input

Flatten Linear Linear
(512 nodes), (10 nodes),

RelLU Softmax

PyTorch

e Designed to be like NumPy

e Alot of (but not all) function names are the same as numpy
(e.g., instead of calling np . sum, you would call torch. sum, etc)

e I PyTorch does not use NumPy arrays and instead uses tensors
(so instead of np.array, you use torch. tensor)

e What's the big ditterence then? Why not just use NumPy?
e PyTorch tensors keep track of what device they reside on

e I Forexample, trying to add a tensor stored on the CPU and a
tensor stored on a GPU will result in an error!

e PyTorch tensors can automatically store “gradient” information
(important for learning model parameters; details in later lecture)

Handwritten Digit Recognition

Demo

Architecting Neural Nets

e Basic building block that is often repeated:
linear layer tfollowed by nonlinear activation

e Without nonlinear activation, two consecutive linear layers is
mathematically equivalent to having a single linear layer!

e How to select # of nodes in a layer, or # of layers?
 These are hyperparameters! Infinite possibilities!

e Choose between different hyperparameter settings by using the
strategy from last lecture (choose based on validation accuracy)

* Very expensive in practice!

e Much more common in practice: modify existing architectures
that are known to work well
(e.g., ResNet or CLIP for image classification/object recognition)

PyTorch Has Lots of Examples

C i pytOFCh org/ lexan np Im::

O PyTorch Get PyTorch _
Ecosystem Blog Tutorials Docs v Resou
Started Edge v
Docs > PyTorch Examples

O\ Search Docs

PyTorch Examples PYTORCH EXAMPLES

This pages lists various PyTorch examples that you can use to learn and experiment with PyTorch.

Image Classification using Vision Transformer Image Classification Using ConvNets

This example shows how to train a Vision This example demonstrates how to run image

Transformer from scratch on the CIFART0 classification with Convolutional Neural

database. Networks ConvNets on the MNIST database.

GO TO EXAMPLE 5 GO TO EXAMPLE (5

Measuring Similarity using Siamese Network Word-level Language Modeling using RNN and
Transformer

This example demonstrates how to measure

.
cirmilaritv haruaraan FuarA imacrac icinea Cliamanca Thicr aAvarmnla AamAanctraracs hAwur A Frain A manled

Find a Massive Collection of Models at the
Model Zoo

ModelZoo

Model Zoo

Discover open source deep learning code and pretrained

models.

Browse Frameworks Browse Categories

More Recently: Lots of Models are on
Hugging Face &

& Models - Hugging Face

C °5 huggingface.co/models

~ . Hugging Face Models Datasets Spaces

Hugging Face is way more fun with friends and colleagues! &2 Join an organization

Libraries Datasets Languages Licenses Models
Other

% Qwen/Qwen2.5-Coder-32B-Instruct

Multimodal
Audio-Text-to-Text [Image-Text-to-Text M mistralai/Pixtral-Large-Instruct-2411
[@ Visual Question Answering

5 Document Question Answering @ NexaAIDev/omnivision-968M

(3 Video-Text-to-Text Any-to-Any

Computer Vision
A black-forest-labs/FLUX.1-dev
Depth Estimation 24 Image Classification

Object Detection . Image Segmentation

Text-to-lmage [% Image-to-Text € briaai/RMBG-2.0

Learning a neural net amounts to
“curve fitting”

We're just estimating a function

Neural Net as Function Approximation

¢ IHE I I I I H I H H I 5 H I H H 5 5 5 5 5 =H 5§ 5 =5 5§ H I 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 = 5 &5 = =5 =B = = = = = = = = = = = =mmm m g,

Multinomial logistic regression:

def f(input):
output = softmax(np.dot(input, ':W:.T) + ':5:)
return output !

the only things that we are learning
(we fix their dimensions in advance)

We are fixing what the function f looks like in code and are
only adjusting W and b!!!

Neural Net as Function Approximation

Given input, learn a computer program that computes output
Multinomial logistic regression:
output = softmax(np.dot(input, W.T) + Db)
Multilayer perceptron:
intermediate = relu(np.dot(input, W1.T) + bl)
output = softmax(np.dot(intermediate, W2.T) + b2)

Learning a neural net: learning a simple computer program that maps inputs
(raw feature vectors) to outputs (predictions)

Complexity of a Neural Net?

Increasing number of layers (depth) makes neural net more “complex”
= Learn computer program that has more lines of code
Earlier: MLP had more parameters than logistic regression

Upcoming: we'll see an example where a deeper network has fewer
oarameters than a shallower one

Accounting for image structure:
convolutional neural nets
(CNNs or convnets)

Convolution

Slide by Phillip Isola

Convolution

O | o o o o o| o

0/0]0
T 11 |1
T 11 |1
71110
T 11 |1
T 11 |1
O[01O0

0
0

O] 01O
0

O] 110
0
0 O 010
0 .

Filter

0 (also called "kernel”)

Input image

Convolution

O | o o o o o| o

0/0]0
T 11 |1
T 11 |1
71110
T 11 |1
T 11 |1
O[01O0

0
0

O 00
0

O 10
0
0 O 0|0
0 .

Filter

0 (also called "kernel”)

Input image

Convolution

Take dot product!

0| [0g/ 0g 0 | 0| 0|0
0ol 04| T | 1|00 0
G| ITol 7@ 1 | 1| 1]0
o T T[1/0/0]0
o111 [1]1]0
ojlol1|[1]/1]0]0
ojlolo|lo|0]0]O

Input image Output image

Convolution

Take dot product!

(@)
o
N
o

()

O | o o o o o| o

—
—
-
-
Ol o o o o o| o

Input image Output image

Convolution

Take dot product!

O 10| |0l [Og O

O 1179l 14 Tg O

O | o o o o o| o

—
—
-
-]
Ol o o o o o| o

Input image Output image

Convolution

Take dot product!

0|00 | qlloglog 0
0| 0|1 |[Toll74][100 0 01111
0 | 1|1 |[TollTal[Tql
O/1T /1] 1T]0]7T07]0
o1 1111110
oloj11[1]0]0
ojlolo|lo|0]0]O

Input image Output image

Convolution

Take dot product!

O | o o o o o| o

Input image Output image

Convolution

Take dot product!

0Oj]0|0]0|0|0]|O

Og Og "o 1 | 1100 O 1T]1]1]0
0011101110 1

()01 P 0010

or 1T 117 11111110

O[O0 1T[1|1]0]|O

0Oj0|0|0|0O0|O0]|O

Input image Output image

Convolution

Take dot product!

0Oj]0|0]0|0|0]|O

O ||0g/Tg Mg " |00 O 1T]1]1]0
0101110110 T 11
010101 0 | 0|0

o T 11T i 1v7H1]1]0

O[O0 1T[1|1]0]|O

0Oj0|0|0|0O0|O0]|O

Input image Output image

Convolution

O]0]0,0]0|0]|O0

OO0 [T [T]1T]0]O0 O[T [1T]1]0
O 1T[1T [T] 1T]1T]0 0O/ 0| O T11 1111]1
O/ 1711107010 * o 1,0, = T11T (111010
O 1T [1T (1T 1T]1T]O0 O/ 0|0 T 111111] 1
OO0 [T [1T]1T]0]O0 O[T [1T]1T]0
O0,0[0]0]0|0/|0

Input image Output image

Note: output image is smaller than input image

It you want output size to be same as input, pad O's to input

Convolution

o/o0oj]0j0 0|0O|O0O]|O0|O

O,0]00]0|0O0O|0]0]|O0 O,07010/0 0
o(fojfo;1{1{1]010]0 O,0 1T 1T/1 0
o(fo|1|{1{1{1]1]0]0 O 0 O Ol 1T [11111 0
o(fo(1T/1]1T]0]0]0|0] = o/ 10| = |(0[1T]1T]1]0 0
o(fo|1}{1{1{1]1]0]0 O 0|O Ol 1T 11111 0
o(fofo;1{1}{17]010]0 O,0 1T 11 0
o(fojo0,0]0]0O0]0O0O|0]|O O,0101010 0
o/ 0jo0j0jO0O|O0O|O0O|O0]|O

Input image Output image

Note: output image is smaller than input image

It you want output size to be same as input, pad O's to input

Convolution

0 0O, 0]0]0]|O0

0 T11T11T101]0 O[T [1T]1]0
0 711111110 0O/ 0| O T1 11111
0 T11T10]101]0 * o 1,0, = T11T (111010
0 T11T 111110 O(0| O T 111111] 1
0 T11T11T101]0 O[T [1T]1T]0
0 0/0]0]0]O0

Input image Output image

Convolution

0]0]0 0

0

0

0

Output image

Input image

Convolution

O | o o o o o| o

0

0

0 -1 -1 -1
0 2 2 | 2|2 | =
0 11 -1 -1
0

0

O]0|O0
T 1111
T 1111
71110
T 1111
T 1111
0100
Input image

Output image

Convolution

Very commonly used for:

e Blurring an image

1/911/9(1/9

x* (1/9(1/9(1/9| =

1/9(1/91/9
1111 -1

% 2 | 2 | 2 =
1111 -1

(this example finds horizontal edges)

Images from: http://aishack.in/tutorials/image-convolution-examples/

Convolution Layer scicioniae

(such as Rel.U)

Conv2d H
Ly apply
X actlvat|on
: E appl :
o il S | ::actlva’uon;
= ,. L i, E -1 : : :
convolve with\g\ ¥ :
each filter 0 X :
: ¥ | :
1k f = OPPY L,
.1 0 gl ¥ :
. tilters & biases (1 bias number per filter) o ’
are unknown and are learned! :

Images from: http://aishack.in/tutorials/image-convolution-examples/

Convolution Layer

Output images

Conv2d

(3 kernels,
each size 3x3),
RelLU activation

Images from: http://aishack.in/tutorials/image-convolution-examples/

Convolution Layer

Stack output
Images Into a

g single "output
feature map”
shape:
shape: ConvZ2d 3,
1 (# channels), (3 kernels, height-2,
height, each size 3x3), width-2
width RelLU activation

Images from: http://aishack.in/tutorials/image-convolution-examples/

Convolution Layer

Stack output
Images Into a

g single "output
feature map”
shape:
shape: ConvZ2d k,
1 (# channels), (k kernels height-2,
height, each size 3x3), width-2
width RelLU activation

Images from: http://aishack.in/tutorials/image-convolution-examples/

Convolution Layer

Stack output
Images Into a

g single "output
feature map”
shape:
shape: ConvZ2d k,
d (# channels) (k kernels height-2,
height, each size dx3x3), width-2
width RelLU activation

Images from: http://aishack.in/tutorials/image-convolution-examples/

Convolution Layer

Stack output
Images Into a

> . 1
single "output
feature map”

P
shape:
shape: Conv2d k,

d (# channels) (k kernels height-2,
height, each size dx3x3), width-2
width RelLU activation

— || L
. ////// * d B
Each filter: d{ s g { EV
L an
\mage W

