
95-865 Unstructured Data Analytics

Nearly all slides by George H. Chen 
with a few by Phillip Isola

Lecture 12: Wrap up neural net basics; 
image analysis with convolutional neural 

nets (also called CNNs or convnets)



Administrivia

• Reminder: My office hours just for today have been shifted a little bit 
earlier and will be from 6:30pm-7:30pm, still over the same Zoom link

• Reminder: HW2 due tonight 11:59pm
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length 784 vector 
(784 input nodes)

weighted sums

(parameterized 
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matrix W and a 
bias b)

input linear

W b

(1D numpy array with 784 entries) (1D numpy array with 10 entries)

(2D numpy array of 
dimensions 
10-by-784)
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(Flashback) Handwritten Digit Recognition

…

linear[0] = np.dot(input, W[0, :]) + b[0]
linear[1] = np.dot(input, W[1, :]) + b[1]

linear[i] = input[j] W[i,j]� + b[i]

<latexit sha1_base64="Lgf3EoMWbxF0jLBUMCJvIQ7Zw5E="></latexit>
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(Flashback) Handwritten Digit Recognition

final 
output

activation

(can be 
thought of as 

post-
processing)

Many different activation functions possible

Example: Rectified linear unit (ReLU) 
zeros out entries that are negative
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(Flashback) Handwritten Digit Recognition

final 
output

activation

(can be 
thought of as 

post-
processing)

Many different activation functions possible

Example: softmax converts a table of numbers 
into a probability distribution

exp = np.exp(linear) 
final = exp / exp.sum()
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(Flashback) Handwritten Digit Recognition

final 
output

activation

(can be 
thought of as 

post-
processing)

Many different activation functions possible

Example: linear activation does nothing

final = linear
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length 784 vector 
(784 input nodes)

28x28 image

flatten

linear layer 
with 10 nodes

final 
output

weighted sums softmax

(parameterized 
by a weight 

matrix W and a 
bias b)

Handwritten Digit Recognition
Pr(digit 0)

Pr(digit 1)

Pr(digit 2)

Pr(digit 9)

Pr(digit 3)

Pr(digit 4)

Pr(digit 5)

Pr(digit 6)

Pr(digit 7)

Pr(digit 8)

Desired result



Input

Handwritten Digit Recognition

Linear 
(10 nodes)

Flatten Softmax

Training label: 6

Loss error

Popular loss function for 
classification: 

categorical cross entropy

Error is 
averaged across 

training 
examples

Learning this neural 
net means finding 

W and b that 
minimize categorical 

cross entropy loss

1

estimated Pr(digit 6)
log

Also called 
fully-connected or 

dense layer

⚠ In PyTorch, softmax is 
included as part of the cross 

entropy loss



Input
Linear 

(10 nodes)
Flatten Softmax

Training label: 6

Loss error

Popular loss function for 
classification: 

categorical cross entropy

1

estimated Pr(digit 6)
log

Input
Linear 

(10 nodes)
Flatten Softmax

Training label: 5

Loss error

Popular loss function for 
classification: 

categorical cross entropy

1

estimated Pr(digit 5)
log

average 
loss/error

Handwritten Digit Recognition
Important: across different 
training data, we are using 

the same linear layer 
(same W and b parameters)

Learning this neural net 
means finding 

W and b that minimize 
categorical cross 

entropy loss

(averaged across training examples)

Example: 
2 training points



Input
Linear 

(10 nodes)
Flatten Softmax

Training label: 6

Loss error

Handwritten Digit Recognition

Categorical 
cross entropy

This neural net has a name: multinomial logistic regression 
(when there are only 2 classes, it’s called logistic regression)



Input

Handwritten Digit Recognition

Flatten Linear 
(512 nodes)

ReLU

Training label: 6

Loss error

Different linear layers; each has its 
own weight matrix and bias vector

Softmax

Basic building block of 
neural nets: 

linear layer with 
nonlinear activation

Linear 
(10 nodes)

Categorical 
cross entropy

Learning this neural net ⇒ learn parameters of both linear layers



Input

Handwritten Digit Recognition

Flatten Linear 
(512 nodes), 

ReLU

Training label: 6

Loss error

Linear 
(10 nodes), 

Softmax Important: in lecture, 
I sometimes use this 
shorthand notation 

(specifying activation to 
go with each linear layer)

Categorical 
cross entropy

This neural net is called a multilayer perceptron 
(# nodes need not be 512 & 10; 

activations need not be ReLU and softmax)



PyTorch
• Designed to be like NumPy

• A lot of (but not all) function names are the same as numpy 
(e.g., instead of calling np.sum, you would call torch.sum, etc)

• What’s the big difference then? Why not just use NumPy?

• PyTorch tensors keep track of what device they reside on
• ⚠ For example, trying to add a tensor stored on the CPU and a 

tensor stored on a GPU will result in an error!

• PyTorch tensors can automatically store “gradient” information 
(important for learning model parameters; details in later lecture)

PyTorch code is often harder to debug than NumPy code

There’s a PyTorch tutorial posted in supplemental materials

• ⚠ PyTorch does not use NumPy arrays and instead uses tensors 
(so instead of np.array, you use torch.tensor)



Handwritten Digit Recognition

Demo



Architecting Neural Nets
• Basic building block that is often repeated: 

linear layer followed by nonlinear activation

• Without nonlinear activation, two consecutive linear layers is 
mathematically equivalent to having a single linear layer!

• How to select # of nodes in a layer, or # of layers?

• These are hyperparameters! Infinite possibilities!

• Choose between different hyperparameter settings by using the 
strategy from last lecture (choose based on validation accuracy)

• Very expensive in practice! 
(Active area of research: neural architecture search)

• Much more common in practice: modify existing architectures 
that are known to work well 
(e.g., ResNet or CLIP for image classification/object recognition)



PyTorch Has Lots of Examples



Find a Massive Collection of Models at the 
Model Zoo



More Recently: Lots of Models are on 
Hugging Face 🤗



Learning a neural net amounts to 
“curve fitting”

We’re just estimating a function



Neural Net as Function Approximation

def f(input):

Given input, learn a computer program that computes output

Multinomial logistic regression:

this is a function

output = softmax(np.dot(input, W.T) + b)

return output
the only things that we are learning 
(we fix their dimensions in advance)

We are fixing what the function f looks like in code and are 
only adjusting W and b!!!



Neural Net as Function Approximation

output = softmax(np.dot(input, W.T) + b)

Given input, learn a computer program that computes output

Multinomial logistic regression:

Multilayer perceptron:

intermediate = relu(np.dot(input, W1.T) + b1)

output = softmax(np.dot(intermediate, W2.T) + b2)

Learning a neural net: learning a simple computer program that maps inputs 
(raw feature vectors) to outputs (predictions)



Complexity of a Neural Net?

Increasing number of layers (depth) makes neural net more “complex”

⟹ Learn computer program that has more lines of code

Earlier: MLP had more parameters than logistic regression

Upcoming: we’ll see an example where a deeper network has fewer 
parameters than a shallower one



Accounting for image structure: 
convolutional neural nets 

(CNNs or convnets)



filter

Slide by Phillip Isola

Convolution
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Convolution
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Note: output image is smaller than input image

If you want output size to be same as input, pad 0’s to input
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Convolution
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Convolution

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

∗ =

Very commonly used for:

• Blurring an image

• Finding edges

-1 -1 -1

2 2 2
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∗ =

(this example finds horizontal edges)

Images from: http://aishack.in/tutorials/image-convolution-examples/



Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

convolve with 
each filter

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

-1 -1 -1

2 2 2

-1 -1 -1

0 -1 0

-1 4 -1

0 -1 0

filters & biases (1 bias number per filter) 
are unknown and are learned!

add bias

add bias

add bias

apply 
activation

apply 
activation

apply 
activation

Conv2d 
layer

Activation layer 
(such as ReLU)



Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

Conv2d 
(3 kernels, 

each size 3x3), 
ReLU activation

Input

Output images



Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

Conv2d 
(3 kernels, 

each size 3x3), 
ReLU activation

Input

Stack output 
images into a 
single “output 
feature map”

shape: 
3, 

height-2, 
width-2

shape: 
1 (# channels), 

height, 
width



Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

Conv2d 
(k kernels 

each size 3x3), 
ReLU activation

Input

Stack output 
images into a 
single “output 
feature map”

shape: 
1 (# channels), 

height, 
width

shape: 
k, 

height-2, 
width-2



Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

Conv2d 
(k kernels 

each size dx3x3), 
ReLU activation

Input

Stack output 
images into a 
single “output 
feature map”

shape: 
d (# channels) 

height, 
width

shape: 
k, 

height-2, 
width-2



Convolution Layer

Conv2d 
(k kernels 

each size dx3x3), 
ReLU activation

Input

Stack output 
images into a 
single “output 
feature map”

shape: 
d (# channels) 

height, 
width

shape: 
k, 

height-2, 
width-2

∗}

d

}

d

image width
image height

Each filter:


