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Lecture 12: Wrap up neural net basics;
image analysis with convolutional neural
nets (also called CNNs or convnets)

Nearly all slides by George H. Chen
with a few by Phillip Isola



Administrivia

e Reminder: HW2 due tonight 11:59pm

e Reminder: My office hours just for today have been shifted a little bit
earlier and will be from 6:30pm-7:30pm, still over the same Zoom link
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(Flashback) Handwritten Digit Recognition

linear[@] = np.dot(input, W[O, :]) + Db[O]
linear[1] = np.dot(input, W[1l, :]) + b[1]
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(Flashback) Handwritten Digit Recognition
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(784 input nodes) with 10 nodes output



(Flashback) Handwritten Digit Recognition
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(Flashback) Handwritten Digit Recognition

Many different activation functions possible 4 0.17
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(Flashback) Handwritten Digit Recognition

Many different activation functions possible 4 A
3.5 3.5
Example: linear activation does nothing 4 4

-1 -1

This is equivalent to there being linear

no activation function 0.5 g 0.5
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. (can be .

final = linear thought of as
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Handwritten Digit Recognition

flatten weighted sums softmax
> > >
(parameterized
by a weight
matrix Wand a
28x28 image bias b)
length 784 vector inear layer final

(784 input nodes) with 10 nodes output



Handwritten Digit Recognition

Training label: 6
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Handwritten Digit Recognition

Training label: 6

Input )
Flatten Linear Softmax

E.xz.:lmple:. (10 nodes)
2 training points

Loss = crror

log

1

estimated Pr(digit 6)

Training label: 5

Input

Flatten Linear Softmax
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1
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average
loss/error



Handwritten Digit Recognition

Training label: 6
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Handwritten Digit Recognition

Training label: 6

v
— —> — —> —> | Loss | = error
Categorical

cross entropy

Input

Flatten Linear RelLU Linear Softmax
(512 nodes) (10 nodes)



Handwritten Digit Recognition

Training label: 6

v
— > —_ > | Loss | = error
Categorical

cross entropy

Input

Flatten Linear Linear
(512 nodes), (10 nodes),

RelLU Softmax



PyTorch

e Designed to be like NumPy

e Alot of (but not all) function names are the same as numpy
(e.g., instead of calling np . sum, you would call torch. sum, etc)

e I PyTorch does not use NumPy arrays and instead uses tensors
(so instead of np.array, you use torch. tensor)

e What's the big ditterence then? Why not just use NumPy?
e PyTorch tensors keep track of what device they reside on

e I Forexample, trying to add a tensor stored on the CPU and a
tensor stored on a GPU will result in an error!

e PyTorch tensors can automatically store “gradient” information
(important for learning model parameters; details in later lecture)



Handwritten Digit Recognition

Demo



Architecting Neural Nets

e Basic building block that is often repeated:
linear layer tfollowed by nonlinear activation

e Without nonlinear activation, two consecutive linear layers is
mathematically equivalent to having a single linear layer!

e How to select # of nodes in a layer, or # of layers?
 These are hyperparameters! Infinite possibilities!

e Choose between different hyperparameter settings by using the
strategy from last lecture (choose based on validation accuracy)

* Very expensive in practice!

e Much more common in practice: modify existing architectures
that are known to work well
(e.g., ResNet or CLIP for image classification/object recognition)



PyTorch Has Lots of Examples

C i pytOFCh org/ lexan np Im::

O PyTorch Get PyTorch _
Ecosystem Blog Tutorials Docs v Resou
Started Edge v
Docs > PyTorch Examples

O\ Search Docs

PyTorch Examples PYTORCH EXAMPLES

This pages lists various PyTorch examples that you can use to learn and experiment with PyTorch.

Image Classification using Vision Transformer Image Classification Using ConvNets

This example shows how to train a Vision This example demonstrates how to run image

Transformer from scratch on the CIFART0 classification with Convolutional Neural

database. Networks ConvNets on the MNIST database.

GO TO EXAMPLE 5 GO TO EXAMPLE (5

Measuring Similarity using Siamese Network Word-level Language Modeling using RNN and
Transformer

This example demonstrates how to measure

. . . . . . . . .
cirmilaritv haruaraan FuarA imacrac icinea Cliamanca Thicr aAvarmnla AamAanctraracs hAwur A Frain A manled



Find a Massive Collection of Models at the
Model Zoo

ModelZoo

Model Zoo

Discover open source deep learning code and pretrained

models.

Browse Frameworks Browse Categories




More Recently: Lots of Models are on
Hugging Face &

& Models - Hugging Face

C °5 huggingface.co/models

~ . Hugging Face Models Datasets Spaces

Hugging Face is way more fun with friends and colleagues! &2 Join an organization

Libraries Datasets Languages Licenses Models
Other

% Qwen/Qwen2.5-Coder-32B-Instruct

Multimodal
Audio-Text-to-Text [ Image-Text-to-Text M mistralai/Pixtral-Large-Instruct-2411
[@  Visual Question Answering

5 Document Question Answering @ NexaAIDev/omnivision-968M

(3 Video-Text-to-Text Any-to-Any

Computer Vision
A black-forest-labs/FLUX.1-dev
Depth Estimation 24 Image Classification

Object Detection . Image Segmentation

Text-to-lmage  [% Image-to-Text € briaai/RMBG-2.0



Learning a neural net amounts to
“curve fitting”

We're just estimating a function



Neural Net as Function Approximation
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-----------------------------------------------------------------

Multinomial logistic regression:

def f(input):
output = softmax(np.dot(input, ':W:.T) + ':5:)
return output !

the only things that we are learning
(we fix their dimensions in advance)

We are fixing what the function f looks like in code and are
only adjusting W and b!!!



Neural Net as Function Approximation

Given input, learn a computer program that computes output
Multinomial logistic regression:
output = softmax(np.dot(input, W.T) + Db)
Multilayer perceptron:
intermediate = relu(np.dot(input, W1.T) + bl)
output = softmax(np.dot(intermediate, W2.T) + b2)

Learning a neural net: learning a simple computer program that maps inputs
(raw feature vectors) to outputs (predictions)



Complexity of a Neural Net?

Increasing number of layers (depth) makes neural net more “complex”
= Learn computer program that has more lines of code
Earlier: MLP had more parameters than logistic regression

Upcoming: we'll see an example where a deeper network has fewer
oarameters than a shallower one



Accounting for image structure:
convolutional neural nets
(CNNs or convnets)



Convolution

Slide by Phillip Isola




Convolution

O | o o o o o| o

0/0]0
T 11 |1
T 11 |1
71110
T 11 |1
T 11 |1
O[01O0

0
0

O] 01O
0

O] 110
0
0 O 010
0 .

Filter

0 (also called "kernel”)

Input image



Convolution

O | o o o o o| o

0/0]0
T 11 |1
T 11 |1
71110
T 11 |1
T 11 |1
O[01O0

0
0

O 00
0

O 10
0
0 O 0|0
0 .

Filter

0 (also called "kernel”)

Input image



Convolution

Take dot product!
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Convolution
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Convolution
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Convolution

Take dot product!

0|00 | qlloglog 0
0| 0|1 |[Toll74][ 100 0 01111
0 | 1|1 |[TollTal[Tql
O/1T /1] 1T]0]7T07]0
o1 1111110
oloj11[1]0]0
ojlolo|lo|0]0]O

Input image Output image



Convolution
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Convolution

Take dot product!

0Oj]0|0]0|0|0]|O

Og Og "o 1 | 1100 O 1T]1]1]0
0011101110 1

()01 P 0010

or 1T 117 11111110

O[O0 1T[1|1]0]|O

0Oj0|0|0|0O0|O0]|O

Input image Output image



Convolution

Take dot product!
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Convolution
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Convolution
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Convolution
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Convolution
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Convolution

Very commonly used for:

e Blurring an image

1/911/9(1/9

x* (1/9(1/9(1/9| =

1/9(1/91/9
1111 -1

% 2 | 2 | 2 =
1111 -1

(this example finds horizontal edges)

Images from: http://aishack.in/tutorials/image-convolution-examples/



Convolution Layer scicioniae

(such as Rel.U)

--------

Conv2d H
Ly apply
X actlvat|on
: E appl :
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convolve with\g\ ¥ :
each filter 0 X :
: ¥ | :
1k f = OPPY L,
.1 0 gl ¥ :
. tilters & biases (1 bias number per filter) o ’
are unknown and are learned! :

Images from: http://aishack.in/tutorials/image-convolution-examples/



Convolution Layer

Output images

Conv2d

(3 kernels,
each size 3x3),
RelLU activation

Images from: http://aishack.in/tutorials/image-convolution-examples/



Convolution Layer

Stack output
Images Into a

g single "output
feature map”
shape:
shape: ConvZ2d 3,
1 (# channels), (3 kernels, height-2,
height, each size 3x3), width-2
width RelLU activation

Images from: http://aishack.in/tutorials/image-convolution-examples/



Convolution Layer

Stack output
Images Into a

g single "output
feature map”
shape:
shape: ConvZ2d k,
1 (# channels), (k kernels height-2,
height, each size 3x3), width-2
width RelLU activation

Images from: http://aishack.in/tutorials/image-convolution-examples/



Convolution Layer

Stack output
Images Into a

g single "output
feature map”
shape:
shape: ConvZ2d k,
d (# channels) (k kernels height-2,
height, each size dx3x3), width-2
width RelLU activation

Images from: http://aishack.in/tutorials/image-convolution-examples/



Convolution Layer

Stack output
Images Into a

> . 1
single "output
feature map”

P
shape:
shape: Conv2d k,

d (# channels) (k kernels height-2,
height, each size dx3x3), width-2
width RelLU activation
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